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This paper presentsa general approachfor computing the
m

inductance and capacitancecoefficients of short links and for the

Abstract: This study investigates the computing of

the inductance and capacitance coefficients of short links

(gold wire connections, vias, interconnection crossing and

coupled lines). The [L] and [C] matrix calculations are

performed with the vector and scalar potential given in an

integral form, taking into account the current densi@

distribution on the conductors. Analytical formulas easy to

use in CAD are derivedfiom the numerical results using a

least square method. The formulas have been shown to

agree, with a precision in the order of 370, with simulation

results and with experimental results obtained on test

boards in the frequency range 1-30 GHz.

I. Introduction

In the past fifteen years, we have witnessed a spectacular

development in the complexity and speed of operation of integrated
circuits. One problem facing designers of integrated circuit
packages is the accurate prediction of electrical performances

before the fabrication process is sketched [1]. The continuous

improvement of integrated circuit fabrication processes allows to
increase the integration density. At high levels of integration, a

large number of short interconnections is needed, which indnces

delays and interference. Besides the delay, mismatch and coupling
effect due to long links (lengths comparable or greater than the

wavelength), localized phenomena due to shorter links (lengths

smaller than the wavelength) also disturb the signal propagation.
For all these reasons, circuits simulators shonld take into account
parasitic effects. Figure 1 illustrates a number of cases where

interconnections give rise to parasitic effects: wire bonding, Tape
Automatic Bonding (TAB), via hole, interconnection crossing,
coupled line, ... .

Tape Automatic Bonding
TAB Parrdlel wire bondings

Wire bonding
at different heights

Coupled lines

Figure 1: Some typical configurations of interconnections.
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evaluation of analytical formulas used in CAD. The second section

presents the detail of the numerical approach. The capacitance and
inductance coefficients involved in the equivalent model are

calculated. To do this, the scalar and the vector potential are

expressed in an integral form, taking into account the current

density distribution and the charge density distribution on the
conductors. In the third section, we present analytical formulas,

easy to use in CAD systems, derived from the numerical results
using a least square fit method, as well as a comparison of the

predicted results with simulation results and with experimental

results obtained on test units,

11- Formulation of the problem
Different geometries have been investigated (figure 2).

Bonding wires and vias are generally described by an inductance
whose value is determined from the potential vector integral [2];

interconnection crossings and coupled lines are generally described

by capacitance whose value is determined from the potential scalar

integral [3].

Lf!5i!d/t!o!p,H
c, L

LEz_w”=F-t
e) f)

Figure 2: Different types of interconnections: a)- One
wire bonding. b)- Two parallel wire bondings. c)- Wke bonding at

different heigths. d)- Ribbon connection. e)- Via hole,

f)- Interconnection crossing. g)- Coupled lines.

A. Calculation of inductance parameters
Bonding wires and vias are generaly discribed by an

inductance whose value is determined from the potentisd vector

integral. The [L] matrix calculation is performed with the potential
vector given in its integral form [2]:

(1)

The coefficients are difficult to evaluate analytically from
the above integrals, since the current distribution is generally
unknown and the shape of the conductors variable. We have thus
used the Partial Element Equivalent Circuit method (P.E.E.C.) [4]
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Figure 3: Subdivision of a conducting segment into elementary

cylinders.

which consists in dividing the conductors into elementary

cylinders where uniform current is assumed, Each elementary
cylinder is represented by its partial resistance, its partial self and

mutual inductances.

Each segment j (j = 1, 2, ... N) of a conductor is divided
into Nj elementary cylinders of cross-section Sn and length in

(figure 3). The average voltage across cylinder m is given by:

~ is the potential vector arising from elementary current Ij at
ml

point }mon cylinder m.

(2)

Equation (2) is written for each cylinder j = 1, 2, .... Nj)
giving a system of N equations :

M =[%1M (3)

In the partial inductances coefficients Lmn, self (m=n) and
mutual (m # n) effects have been separated assuming elementary

cylinders.

The self inductances can be found in several references

[2], [4]. The partial mutual inductance depends mainly on the

geometrical positions and the length of the two segments and only
slightly on the cross section shapes. Hence, in a first order

approximation, we will calculate the filament inductances,

assuming that the cross section of the two segments is much smaller
than the segment lengths [5].

B. Calculation of capacitances parameters
Interconnection crossings and coupled lines are generally

described by a capacitance whose value is determined from the

potential scalar integral.

The considered geometry is shown in figure 4. The

electromagnetic problem is formulated by using free-

ENd

Figure 4: Multilevel interconnections in a multilayer.

space Green’s functions. At any point }, the scalar potential CDis

given by the well known relation:

PT(~.)
o(i) = i J~ [G(;,;C) -G(;,;C’)]dSC (5)

j=l s
J

where p ~ ( Fc) is the total charge density at rc, and Sj is the

boundary of the jth interface.
The total number of these interfaces is:

N= Nc+Nd–l (6]

Nd is the number of the dielectric layers and Nc is the

number of conductors,

dSc is the differential element of length on Sj,

r“~ is the image of ~Cabout the main ground plane,

G (], ~c) is the Green’s function in two-dimensional free

space.
The problem is to find the total charge density distribution

pT taking into account the potenti~ @. The real free charge density

P~ , on the surface of each conductor, is determined by the
boundary conditions. The capacitance coefficients Cij between
conductor i and j are found from the relation ship:

Qi = ~pL(r)dsi = f Cij $j (7)

Si i=l

where Qi is the free charge of conductor i.

The Method of Moments [6] is used to solve integral

equation (5). In order to determine the total charge density, all
interfaces are divided into J elementary parts. A solution is
obtained assuming the total charge density p ~n on each partition n

as constanq so the elementary total charge qTn on the partition of
length Aln , is:

The unknown qTn are determined using boundary
conditions on each partition. Assuming the field and potential are

constant and equal to their average value for each partition, the

unknowns (qTn, n= 1, 2, .... J) can be written in matrix form:

[~mnl [L7J = [@ml (9)

where [Kmn] is a matrix determined from the potential continuit~-

on the conductors held at voltage of @iand from the continuity of
the normal component of the deplacemeut vector

The unknown qTn are obtained by:

[qT,] = [Kn.l ‘1 [o~l (10)

From this result, the free charge density and the

capacitance coefficients are then determined.

III- Analytical Formulas and comparisons with simulations and
experimental results

Electromagnetic simulation techniques require large
computer memories, long computing time and large data handling.

For these reasons, they are difficult to use extensively in CAD
systems. We have developed formulas for the following cases: one
wire bonding, wire bonding at different heigths, two parallel wire
bondings, ribbon connection (T. A. B.), via hole, coupled lines, and
interconnection crossing. These formulas have been derived from

numerical results using the least square method [7] and are of easy

use. Geometrical and technological parameters are considered as

input data.
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Because of their empirical nature, these expressions are

restricted to a specified domain of validity. We have limited the

study to a particular domain of interest, but the method can
obviously be applied to different domains of validity.

The simulations agree with a precision in the order of 3%

with simulation results and with experimental results obtained on
test boards in the frequency range 1-30 GHz.The paper will give, in
table form, a summary of these results. We present below three

specific cases: one wire bonding, two parallel wire bondings and
ribbon connection.

III. 1- One wire bonding
In the case of one wire bonding, the analytical formulas

have an accuracy of about 3% for the following set of parameters:

10 <d(p) <70

100 < R (w) <650
30 s.s(prn) <200

The detailed expression for this case is given below:
.

L (nIf) = a (R2) +

()

~ bid’ (R)

i=o

+ [p”)cid’ (11)
i=l)

where a = 9.678610-7 and Table 1 lists the coefficients bi and c, (i = 1, 2)

1111121131141

1 b I -4.6310”’ I 7.5410”7 I -5.4810-51 0.0032 I

t c, I 3.2410”8 I -6.5210-6 I 8.82910-4 I -0.0835 I

Table 1: Coefficients bi and cj for the case of one wire bondlrrg.

III. 2- Two parallel wire bonding

Multiple parallel bond wires are preferred to reduce

inductance and increase reliability. For two parallel bond wires with
a spacing S between wires (figure 2b), the inductance of the pair is:

L
_g+~

pair – 2 2
(12)

where M is the mutual inductance and L is the self inductarrce.The

detained expressions for the mu af induc ante M is iven below:
,? /4 .-f

r 3 /3 .1

(13)

Table 2 lists the coefficients ~j and bij (i = 1 to3 and j =1 to 3)

j=l j=2 j=3

i=l -5.65410-12 -3.331 10-s -9.97210-7

A,j
1=2 -1.437 lo-to 6.72410-6 -3.58510-5

1=3 2.71410-8 -6.46910-4 0.0222

i= 1 -2.49510-11 1.99910-7 1.63710-6

BiJ
i=2 9.72210-9 -3.92210-5 2.33310-4

i=3 9.13610-7 0.0036 -0.1546

Table Z Coefficients b,j and C,jfor the caseof two paratlel wire bondltrg

111.3- Ribbon connection

The closed form expression for the case of ribbon is given
below:

L(nH) = AL.(W) +B (14)
where

A = 0,0028– (1, 621 10-4)1

B =Bl x(LnH )2 +B2X (LnH ) +Bq

Ill = Bll x (1)2 +B12 x (1) +B13

Bz = B21 X (/)2 +B22X (1) +B23

B~ = B31 X (1)2 +B3ZX (1) +B33

For the following set of parameters:

10s W(pws) s 150a

80< Ff(um) s500

100< l(LLWZ) <600

Table3 lists the coefficients bij ( i = 1 to3 and j = 1 to 3 ).

I] 1 2 3 4I I I I I
1 1.12 10-s I 3.67105 \ 0.0026 I --

I 1 I t I I
Bij 2 -1.3 10-s 4,3410-4 -0.0313 --

3 1.3510-9 1.5210-6 3.11104 0.0028

Table 3: Coefficients Bij for the inductance of a ribbon connection.
A good agreement (within 3’%0) is obtained between

numerical solution and experimental results. In fimrre 5, for the

case of of two parallel wires, the space S between tw-o lines is taken

equal tO 4130 wm. The calculated scattering par~eters together
with results measured using a WILTRON 360 network analyser are

plotted in figure 7. Simulations have been carried out with HFSS

(High Frequency Structure Simulator) [8]. We show in figure 8 and
figure 9 a comparison between simulations results obtained using

HFSS and measuread results for the case of one wire bonding and
ribbon connection. The above formulas have been validated
through extensive measurements performed in the 1 - 30 GHz

frequency range. A good agreement (within 3%) is obtained with

electromagnetic simulations as well as with experimental results.

m a e

02 ;0
a 50 W

V& dlsmetef (tin)

Figure 5: Comparison between analytical formulas and numerical
results for one wire bonding and two parallel wire bonding.
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Figure 6: Comparison between analytical formulas and numerical

results for ribbon connection (TAB).
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Figure 7: Measured and simulated S11 and S12 parameters (f = 1

to 30 GHz).a)- One bonding wire. b)- Ribbon connection.
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Figure 9: Scattering parameters measured (++) and simulated (----)
using HFSS for ribbon connection.

IV- Conclusion

A simplified method to calculate the inductance and
capacitance coefficients of short links (gold wire connections, vias,

interconnection crossing and coupled lines) has been set up which

allows to take into account precisely and easily the parasitic effects

in circuit designs. Analytical formulas easy to use in CAD are

derived from the numencrd results using a least square method. The

formulas have been shown to agree, with a precision in the order of

3%, with simulation results and with experimental results obtained

on test boards in the frequency range 1-30 GHz. This formulas can
be easily used in circuits simulation and optimization programs.
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Figure 8: Scattering parameters measured (++) and simulated (----)

using HFSS for one wire bonding.
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