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Abstract: This study investigates the computing of
the inductance and capacitance coefficients of short links
(gold wire connections, vias, interconnection crossing and
coupled lines). The [L] and [C] matrix calculations are
performed with the vector and scalar potential given in an
integral form, taking into account the current density
distribution on the conductors. Analytical formulas easy to
use in CAD are derived from the numerical results using a
least square method. The formulas have been shown to
agree, with a precision in the order of 3%, with simulation
results and with experimental results obtained on test

boards in the frequency range 1-30 GHz.

L. Introduction

In the past fifteen years, we have witnessed a spectacular
development in the complexity and speed of operation of integrated
- circuits.
packages is the accurate prediction of electrical performances
before the fabrication process is sketched [1]. The continuous
improvement of integrated circuit fabrication processes allows to
increase the integration density. At high levels of integration, a
large number of short interconnections is needed, which induces
delays and interference. Besides the delay, mismatch and coupling
effect due to long links (lengths comparable or greater than the
wavelength), localized phenomena due to shorter links (lengths
smaller than the wavelength) also disturb the signal propagation.
For all these reasons, circuits simulators should take into account
parasitic effects. Figure 1 illustrates a number of cases where
interconnections give rise to parasitic effects: wire bonding, Tape
Automatic Bonding (TAB), via hole, interconnection crossing,
coupled line, ... .

Tape Automatic Bonding

TAB Paralle] wire bondings

Patch
Wire bonding /

1 2 Via hole
at different heights \Interconnectlon
Coupled lines crossing

Figure 1: Some typical configurations of interconnections.
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This paper presents a general approach for computing the
inductance and capacitance coefficients of short links and for the
evaluation of analytical formulas used in CAD. The second section
presents the detail of the numerical approach. The capacitance and
inductance coefficients involved in the equivalent model are
calculated. To do this, the scalar and the vector potential are
expressed in an integral form, taking into account the current
density distribution and the charge density distribution on the
conductors. In the third section, we present analytical formulas,
easy to use in CAD systems, derived from the numerical results
using a least square fit method, as well as a comparison of the
predicted results with simulation results and with experimental
results obtained on test units,

1I- Formulation of the problem
Different geometries have been investigated (figure 2).
Bonding wires and vias are generally described by an inductance
whose value is determined from the potential vector integral [2];
interconnection crossings and coupled lines are generally described
by capacitance whose value is determined from the potential scalar
integral {3].
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Figure 2: Different types of interconnections: a)- One
wire bonding. b)- Two parallel wire bondings. c)- Wire bonding at
different heigths. d)- Ribbon connection. e)- Via hole.,

f)- Interconnection crossing. g)- Coupled lines.

A. Calculation of inductance parameters
Bonding wires and vias are generaly discribed by an
inductance whose value is determined from the potential vector
integral. The [L] matrix calculation is performed with the potential
vector given in its integral form [2]:

dS dl m

Jj= Ovol 1

The coefficients are difficult to evaluate analytically from
the above integrals, since the current distribution is generally
unknown and the shape of the conductors variable. We have thus
used the Partial Element Equivalent Circuit method (PE.E.C.) [4]
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Figure 3: Subdivision of a conducting segment into elementary
cylinders.

which consists in dividing the conductors into elementary
cylinders where uniform current is assumed. Each elementary
cylinder is represented by its partial resistance, its partial self and
mutual inductances.

Each segment j (j = 1, 2, ... N) of a conductor is divided
into N; elementary cylinders of cross-section S, and length [
{figure 3). The average voltage across cylinder m is given by :

= ]mz j jAm]dl ds, 4 om 5 iy )

j=1 msz

i is the potential vector arising from elementary current Ij at
mj

point 7,,0n cylinder m.

Equation (2) is written for each cylinder j = 1, 2, ..., N;,
giving a system of N equations :
[4n] = [Sim[i] )
“0 11 ds,ds, dl dl
w=oys =5 @
mogsi  mT

In the partial inductances coefficients Ly, self (m=n) and
mutual (m # n) effects have been separated assuming elementary
cylinders.

The self inductances can be found in several references
[2], [4]. The partial mutual inductance depends mainly on the
geometrical positions and the length of the two segments and only
slightly on the cross section shapes. Hence, in a first order
approximation, we will calculate the filament inductances,
assuming that the cross section of the two segments is much smaller
than the segment lengths [S].

B. Calculation of capacitances parameters
Interconnection crossings and coupled lines are generally
described by a capacitance whose value is determined from the
potential scalar integral.
The considered geometry is shown in figure 4. The
electromagnetic problem is formulated by using free-

Ground plane

Figure 4: Multileve] interconnections in a multilayer.
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space Green’s functions. At any point 7, the scalar potential ® is
given by the well known relation:

N o
pr (7o)
> [

i=1g;

(7 = ®)

[G(#7) -G(F7.1)1dS,

where p,.(7;) is the total charge density at r., and S; is the
boundary of the jth interface.
The total number of these interfaces is:

N=N_+N,-1 ©6)

Ny is the number of the dielectric layers and N is the
number of conductors,

dS is the differential element of length on Sjs

18 the image of 7, about the main ground plane,

G (r 7.) is the Green s function in two-dimentional free
Space.

The problem is to find the total charge density distribution
pr taking into account the potential ®. The real free charge density
P, . on the surface of each conductor, is determined by the
boundary conditions. The capacitance coefficients Cj between
conductor i and j are found from the relation ship:

Z Cy 9
i=1
where Q; is the free charge of conductor i.

The Method of Moments [6] is used to solve integral
equation (5). In order to determine the total charge density, all
interfaces are divided into J elementary parts. A solution is
obtained assuming the total charge density p.. on each partition n
as constant; so the elementary total charge qr, on the partition of
length Al , is:

;= [p (nas; = )
M

(8)

The unknown qp, are determined using boundary
conditions on each partition. Assuming the field and potential are
constant and equal to their average value for each partition, the
unknowns (qry,, b= 1, 2, ..., J) can be written in matrix form:

(K] Lag,] = [@,] ©

where [K;;,] is a matrix determined from the potential continuity
on the conductors held at voltage of ¢; and from the continuity of
the normal component of the deplacement vector

The unknown qry, are obtained by:

lar,) = (K17 [@, ]

dry = an Aln

(10)

From this result, the free charge density and the
capacitance coefficients are then determined.

III- Analytical Formulas and comparisons with simulations and
experimental results

Electromagnetic simulation techniques require large
computer memories, long computing time and large data handling.
For these reasons, they are difficult to use extensively in CAD
systems. We have developed formulas for the following cases: one
wire bonding, wire bonding at different heigths, two parallel wire
bondings, ribbon connection (T. A. B.), via hole, coupled lines, and
interconnection crossing. These formulas have been derived from
numerical results using the least square method [7] and are of easy
use. Geometrical and technological parameters are considered as
input data.



Because of their empirical nature, these expressions are
restricted to a specified domain of validity. We have limited the
study to a particular domain of interest, but the method can
obviously be applied to different domains of validity.

The simulations agree with a precision in the order of 3%
with simulation results and with experimental results obtained on
test boards in the frequency range 1-30 GHz.The paper will give, in
table form, a summary of these results. We present below three
specific cases: one wire bonding, two parallel wire bondings and
ribbon connection.

I11. 1- One wire bonding
In the case of one wire bonding, the analytical formulas
have an accuracy of about 3% for the following set of parameters:

10 <d(um) <70

100 <R (um) <650
30 <S(pm) <200

The detailed expression for this case is given below:

2
L(nH) = a(R%) + ( D bid’) (R)
i=0
i
* ( 2 e J (11)
i=0
whete a = 9.6786 1077 and Table 1 lists the coefficients b; and ¢, (i = 1, 2)

11 12 13 14

b, 4.6310° | 754107 | -54810° | 0.0032

C

) 32410% | -6.5210° | 8.82010* | -0.0835

Table 1: Coefficients b; and c; for the case of one wire bonding.

IIL. 2- Two parallel wire bonding

Multiple parallel bond wires are preferred to reduce
inductance and increase reliability. For two parallel bond wires with

a spacing S between wires (figure 2b), the inductance of the pair is:
L M
Lpair =3t7
where M is the mutual inductance and L is the self inductance.The

detailled expressions for the mutgal induc%ance M is given below:

M(nH) = {{ > (Zaij Rj) d'} Ln(S)
i

i=1 =1

{3 ()

i=1 Y=1
Table 2 lists the coefficients aj; and byj (i=1 to3 and j=1t03)

(13)

j=1 =2 =3
i=1 | -5.6541012 | -333110% | -9.972107
Ay | 2| 1 1010 | 672410 | -3.58510-5
=3 | 2714108 | -6.469 107 0.0222
=1 | 2495101 | 1.999 107 1,637 10
B, i=2 | 97221079 39221075 2.333 104
i=3 | 9.136107 0.0036 -0.1546

Table 2: Coefficients by and c,; for the case of two parallel wire bonding.
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H1.3- Ribbon connection
The closed form expression for the case of ribbon is given
below:

L(nH) = ALn (W) +B (14
where

A = 0,0028 - (1,621 10791
B =B, x(LnH )* +By,x (LnH ) +B,
B, = B, x()? +B;, x () +B
By =B, X (D)% +Byx () +By
By = By x()? +Byx () +Bs,

For the following set of parameters:
JLUES W(um) £ 150
80 < H (um) <500
100< [ (um) <600
Table3 lists the coefficients by (1 =1 to3 andj=1to3).

ij I 2 3 4

1 | 12108 ] 36710° | 0.0026 -

B. 2 | -1310% | 43410% | -0.0313 -
ij

3 1 13510° | 1.5210% | 3.1110% | 0.0028

(12)

Table 3: Coefficients Bj; for the inductance of a ribbon connection.
A good agreement (within 3%) is obtained between
numerical solution and experimental results. In figure 5, for the
case of of two parallel wires, the space S between two lines is taken
equal to 400 pm. The calculated scattering parameters together
with results measured using a WILTRON 360 network analyser are
plotted in figure 7. Simulations have been carried out with HFSS
(High Frequency Structure Simulator) [8]. We show in figure 8 and
figure 9 a comparison between simulations results obtained using
HFSS and measuread results for the case of one wire bonding and
ribbon connection. The above formulas have been validated
through extensive measurements performed in the 1 - 30 GHz
frequency range. A good agreement (within 3%) is obtained with
electromagnetic simulations as well as with experimental results.

Inductance (nH)
g 2 g2 8 8 ¢ ¢

L i Il t
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Bord wre (Thceeal Bond ke {Fomuies)
Toro parallel wires (Theorical) Twmwvgﬁfﬂmhﬂ
with 3pace $ = 400 un

Figure 5: Comparison between analytical formulas and numerical
results for one wire bonding and two parallel wire bonding.



Figure 6: Comparison between analytical formulas and numerical
results for ribbon connection (TAB).
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Figure 7: Measured and simulated S11 and S12 parameters (f = 1
to 30 GHz).a)- One bonding wire. b)- Ribbon connection.
o

Figure 8: Scattering parameters measured (++) and simulated (==--)
using HFSS for one wire bonding.
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Figure 9: Scattering parameters measured (++) and simulated (----)
using HFSS for ribbon connection.

IV- Conclusion

A simplified method to calculate the inductance and
capacitance coefficients of short links (gold wire connections, vias,
interconnection crossing and coupled lines) has been set up which
allows to take into account precisely and easily the parasitic effects
in circuit designs. Analytical formulas easy to use in CAD are
derived from the numerical results using a least square method. The
formulas have been shown to agree, with a precision in the order of
3%, with simulation results and with experimental results obtained
on test boards in the frequency range 1-30 GHz. This formulas can
be easily used in circuits simulation and optimization programs.
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